
NoisePy Documentation
Release v1.0

Chengxin Jiang

Aug 25, 2020

Contents

1 Functionality 3
1.1 Installation . 3

1.1.1 NoisePy and Dependencies . 3
1.1.2 Testing . 4

1.2 Tutorial . 4
1.2.1 S0A. Downloading seismic noise data . 4
1.2.2 S0B. Deal with local SAC/miniseed data . 5
1.2.3 S1. Perform cross correlations . 5
1.2.4 S2. Do stacking . 6

1.3 Pyasdf examples . 8
1.3.1 Creating an ASDF File . 9
1.3.2 Processing Observed Data in Parallel . 9
1.3.3 Running pyflex in Parallel . 11
1.3.4 Calculate Source-Receiver Geometry . 13

1.4 Applications . 14
1.4.1 I. Group velocity measurements . 14
1.4.2 II. Monitoring velocity changes . 15

i

ii

NoisePy Documentation, Release v1.0

This is the documentation for the Python package of NoisePy, which is a new high-performance python tool for
seismic ambient noise seismology. For further information and contact information please see below website:

• Github repository of NoisePy: https://github.com/mdenolle/NoisePy

If you use NoisePy for your research and prepare publications, please consider citing NoisePy:

• Jiang, C., Yuan, C., and Denolle, M. NoisePy: a new high-performance python tool for seismic ambient noise
seismology. In prep for Seismological Research Letter.

We gratefully acknowledge support from the Packard Fundation (www.packard.org).

Contents 1

https://github.com/mdenolle/NoisePy
http://www.packard.org

NoisePy Documentation, Release v1.0

2 Contents

CHAPTER 1

Functionality

• Download continous noise data based on obspy’s core functions of get_station and get_waveforms

• Save seismic data in ASDF format, which convinently assembles meta, wavefrom and auxililary data into one
single file (Turtorials on reading/writing ASDF files)

• Offers high flexibility to handle messy SAC/miniSEED data stored on your local machine and convert them into
ASDF format data that could easily be pluged into NoisePy

• Performs fast and easy cross-correlation with functionality to run in parallel through MPI

• Includes a series of monitoring functions to measure dv/v on the resulted cross-correlation functions using some
recently developed new methods (see our papers for more details)

1.1 Installation

1.1.1 NoisePy and Dependencies

The nature of NoisePy being composed of python scripts allows flexiable package installation. What you need to do
is essentially build dependented libraries the scripts and related functions live upon.

NoisePy supports Python version 3.5, 3.6, and 3.7 and it depends on the following Python modules: NumPy, ObsPy,
pyasdf, mpi4py, numba, pycwt. We recommand to use conda and pip to install the library due to their convinence.
Below are command lines we have tested that would create a python environment to run NoisePy.

$ conda create -n noisepy -c conda-forge python=3.7.3 numpy=1.16.2 numba pandas pycwt
→˓mpi4py=3.0.1
$ conda activate noisepy
$ pip install obspy pyasdf

Note: Please note that the test is performed on macOS Mojave (10.14.5), so it could be slightly different for other
OS.

3

https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_waveforms.html
https://asdf-definition.readthedocs.io/en/latest/
https://github.com/SeismicData/pyasdf/blob/master/doc/tutorial.rst
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://docs.conda.io/en/latest/
https://pypi.org/project/pip/

NoisePy Documentation, Release v1.0

1.1.2 Testing

To assert that your installation is working properly, execute

$ python S0_download_ASDF.py
$ python S1_fft_cc.py
$ python S2_stacking.py

and make sure the scripts all pass successfully. Otherwise please report issues on the github page or contact the
developers.

Github repository of NoisePy can be found here: https://github.com/mdenolle/NoisePy

1.2 Tutorial

• S0A. Downloading seismic noise data

• S0B. Deal with local SAC/miniseed data

• S1. Perform cross correlations

• S2. Do stacking

1.2.1 S0A. Downloading seismic noise data

The script of S0_download_ASDF_MPI.py (located in src directory) and its existing parameters allows to download all
available broadband CI stations (BH?) located in a certain region and operated during 1/Jul/2016-2/Jul/2016 through
the SCEC data center. In the script, short summary is provided for all input parameters that can be changed according
to the user’s needs. In the current form of the script, we set inc_hours=24 to download day-long continous noise
data as well as the meta info and store them into a single ASDF file. To increase the signal-to-noise (SNR) of the
final cross-correlation functions (see Seats et al.,2012 for more details), we break the day-long sequence into smaller
segments, each of cc_len (s) long with some overlapping defined by step. You may wanto to set flag to be True if
intermediate outputs/operational time is preferred during the downloading process. To run the code on a single core,
open the terminal and activate the noisepy environment before run following command. (NOTE that things may go
completely different if you want to run NoisePy on a cluster. Better check it out first!!)

$ python S0_download_ASDF.py

If you want to use multiple cores (e.g, 4), run the script with the following command using mpi4py.

$ mpirun -n 4 python S0_download_ASDF_MPI.py

The outputted files from S0A include ASDF files containing daily-long (24h) continous noise data, a parameter file
recording all used parameters in the script of S0A and a CSV file of all station information (more details on reading
the ASDF files with downloaded data can be found in docs/src/ASDF.md). The continous waveforms data stored in
the ASDF file can be displayed using the plotting modules named as plotting_modules in the directory of src as shown
below.

>>> import plotting_modules (cd to your source file directory first before loading
→˓this module)
>>> sfile = '/Users/chengxin/Documents/SCAL/RAW_DATA/2016_07_01_00_00_00T2016_07_02_
→˓00_00_00.h5'

(continues on next page)

4 Chapter 1. Functionality

https://github.com/mdenolle/NoisePy
https://mpi4py.readthedocs.io/en/stable/

NoisePy Documentation, Release v1.0

(continued from previous page)

>>> plotting_modules.plot_waveform(sfile,'CI','BLC',0.01,0.4)

Note: Please note that the script also offers the option to download data from an existing station list in a format same
to the outputed CSV file. In this case, down_list should be set to True at L53. In reality, the downloading speed is
dependent on many factors such as the original sampling rate of targeted data, the networks, the data center where it
is hosted and the general structure you want to store on your machine etc. We tested a bunch of the parameters to
evaluate their performance and the readers are referred to our paper for more details (Jiang et al., 2019).

1.2.2 S0B. Deal with local SAC/miniseed data

The script of S0B_sacMSEED_to_ASDF.py is developed for the users to handle local data in SAC/miniseed format
stored on your own disk. Most of the variables are the same as those for S0A and thus should be pretty straighforward
to follow and change. In this script, it preprocesses the data by merging, detrending, demeaning, downsampling and
then trimming before saving them into ASDF format for later NoisePy processing. In particular, we expect the script
to deal with very messydata, by which we mean that, seismic data is broken into small pieces and of messy time info
such as overlapping time. REMEMBER to set messydata at L62 to True when you have messy data! (Tutorials on
removing instrument response)

1.2.3 S1. Perform cross correlations

S1_fft_cc_MPI.py is the core script of NoisePy, which performs Fourier transform to all noise data first and loads them
into the memory before they are further cross-correlated. This means that we are performing cross-correlation in the
frequency domain. In the script, we provide several options to calculate the cross correlation, including raw, coherency

1.2. Tutorial 5

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Cross-correlation

NoisePy Documentation, Release v1.0

and deconv (see our paper for detailed definition). We choose coherency as an example here. After running the script,
it will create a new folder named CCF, in which new ASDF files containing all cross-correlation functions between
different station pairs are located. It also creates a parameter file of fft_cc_data.txt that records all useful parameters
used in this script. Once you get the cross-correlation file, you can show the daily temporal variation between all
station-pair by calling plot_substack_cc function in plotting_modules as follows.

>>> import plotting_modules
>>> sfile = '/Users/chengxin/Documents/SCAL/CCF/2016_07_01_00_00_00T2016_07_02_00_00_
→˓00.h5'
>>> plot_modules.plot_substack_cc(sfile,0.1,0.2,200,True,'/Users/chengxin/Documents/
→˓SCAL/CCF/figures')

1.2.4 S2. Do stacking

The script of S2_stacking.py is used to assemble and/or stack all cross-correlation functions computed for the staion
pairs in S1 and save them into ASDF files for future analysis (e.g., temporal variation and/or dispersion extraction).
In particular, there are two options for the stacking process, including linear and phase weighted stacking (pws). In

6 Chapter 1. Functionality

NoisePy Documentation, Release v1.0

general, the pws produces waveforms with high SNR, and the snapshot below shows the waveform comparison from
the two stacking methods. We use the folloing commend lines to make the move-out plot.

>>> import plotting_modules,glob
>>> sfiles = glob.glob('/Users/chengxin/Documents/SCAL/STACK/*/*.h5')
>>> plot_modules.plot_all_moveout(sfiles,'Allstack_linear'0.1,0.2,'ZZ',1,300,True,'/
→˓Users/chengxin/Documents/SCAL/STACK') #(move-out for linear stacking)
>>> plot_modules.plot_all_moveout(sfiles,'Allstack_pws'0.1,0.2,'ZZ',1,300,True,'/
→˓Users/chengxin/Documents/SCAL/STACK') #(move-out for pws)

1.2. Tutorial 7

NoisePy Documentation, Release v1.0

1.3 Pyasdf examples

The pyasdf format is developed by the Theoretical and Computation Seismology Group at Princeton University,
and combines the capability to create comprehensive data sets including all necessary meta information with high-
performance parallel I/O for the most demanding use cases. The users who are interested in the details of this format
are referred to the following publication.

• Krischer, L., Smith, J., Lei, W., Lefebvre, M., Ruan, Y., de Andrade, E.S., Podhorszki, N., Bozdağ, E. and
Tromp, J., 2016. An adaptable seismic data format. Geophysical Supplements to the Monthly Notices of the
Royal Astronomical Society, 207(2), 1003-1011.

To better show the pyasdf format, we use the default examples downloaded from the pyasdf Github repository https:
//github.com/SeismicData/pyasdf for creating, processing and writing pyasdf format data.

• Creating an ASDF File

• Processing Observed Data in Parallel

• Running pyflex in Parallel

8 Chapter 1. Functionality

https://github.com/SeismicData/pyasdf
https://github.com/SeismicData/pyasdf

NoisePy Documentation, Release v1.0

1.3.1 Creating an ASDF File

This example demonstrates how the create a new ASDF file from waveform data in any format ObsPy can read, a
QuakeML file, and a list of StationXML files.

Note: Do NOT run this with MPI. This would require some modifications and is very likely not worth the effort.

1 import glob
2 import os
3

4 from pyasdf import ASDFDataSet
5

6 filename = "observed.h5"
7

8 if os.path.exists(filename):
9 raise Exception("File '%s' exists." % filename)

10

11 ds = ASDFDataSet(filename)
12

13 # Add event
14 ds.add_quakeml(
15 "./GCMT_event_SOUTH_SANDWICH_ISLANDS_REGION_Mag_5.6_2010-3-11-6.xml"
16)
17 event = ds.events[0]
18

19 # Add waveforms.
20 filenames = glob.glob("./SAC/*.SAC")
21 for _i, filename in enumerate(filenames):
22 print("Adding SAC file %i of %i..." % (_i + 1, len(filenames)))
23 # We associate the waveform with the previous event. This is optional
24 # but recommended if the association is meaningful.
25 ds.add_waveforms(filename, tag="raw_recording", event_id=event)
26

27 # Add StationXML files.
28 filenames = glob.glob("./StationXML/*.xml")
29 for _i, filename in enumerate(filenames):
30 print("Adding StationXML file %i of %i..." % (_i + 1, len(filenames)))
31 ds.add_stationxml(filename)

1.3.2 Processing Observed Data in Parallel

This fairly complex examples takes an ASDF file and produces two new data sets, each processed in a different
frequency band.

It can be run with MPI. It scales fairly well and will utilize parallel I/O if your machine supports it. Please keep in
mind that there is a significant start-up cost for Python on each core (special Python versions that get around that if
really necessary are in existence) so don’t use too many cores.

$ mpirun -n 64 python process_observed.py

If you don’t run it with MPI with will utilize Python’s multiprocessingmodule and run it on each of the machines
cores. I/O is not parallel and uses a round-robin scheme where only one core writes at single point in time.

$ python process_observed.py

1.3. Pyasdf examples 9

NoisePy Documentation, Release v1.0

1 import obspy
2 from obspy.core.util.geodetics import gps2DistAzimuth
3 import numpy as np
4

5 from pyasdf import ASDFDataSet
6

7 ds = ASDFDataSet("./observed.h5")
8

9 event = ds.events[0]
10

11 origin = event.preferred_origin() or event.origins[0]
12 event_latitude = origin.latitude
13 event_longitude = origin.longitude
14

15 # Figure out these parameters somehonw!
16 starttime = obspy.UTCDateTime("2010-03-11T06:22:19.021324Z")
17 npts = 5708
18 sampling_rate = 1.0
19

20

21 # Loop over both period sets. This will result in two files. It could also be
22 # saved to the same file.
23 for min_period, max_period in [(27.0, 60.0)]:
24 f2 = 1.0 / max_period
25 f3 = 1.0 / min_period
26 f1 = 0.8 * f2
27 f4 = 1.2 * f3
28 pre_filt = (f1, f2, f3, f4)
29

30 def process_function(st, inv):
31 st.detrend("linear")
32 st.detrend("demean")
33 st.taper(max_percentage=0.05, type="hann")
34

35 st.attach_response(inv)
36 st.remove_response(
37 output="DISP", pre_filt=pre_filt, zero_mean=False, taper=False
38)
39

40 st.detrend("linear")
41 st.detrend("demean")
42 st.taper(max_percentage=0.05, type="hann")
43

44 st.interpolate(
45 sampling_rate=sampling_rate, starttime=starttime, npts=npts
46)
47

48 station_latitude = inv[0][0].latitude
49 station_longitude = inv[0][0].longitude
50 _, baz, _ = gps2DistAzimuth(
51 station_latitude,
52 station_longitude,
53 event_latitude,
54 event_longitude,
55)
56

57 components = [tr.stats.channel[-1] for tr in st]

(continues on next page)

10 Chapter 1. Functionality

NoisePy Documentation, Release v1.0

(continued from previous page)

58 if "N" in components and "E" in components:
59 st.rotate(method="NE->RT", back_azimuth=baz)
60

61 # Convert to single precision to save space.
62 for tr in st:
63 tr.data = np.require(tr.data, dtype="float32")
64

65 return st
66

67 tag_name = "preprocessed_%is_to_%is" % (int(min_period), int(max_period))
68

69 tag_map = {"raw_recording": tag_name}
70

71 ds.process(process_function, tag_name + ".h5", tag_map=tag_map)
72

73 # Important when running with MPI as it might otherwise not be able to finish.
74 del ds

1.3.3 Running pyflex in Parallel

pyasdf can be used to run a function across the data from two ASDF data sets. In most cases it will be some kind
of misfit or comparision function. This example runs pyflex to pick windows given a data set of observed and another
data set of synthetic data.

It can only be run with MPI:

$ mpirun -n 16 python parallel_pyflex.py

1 import pyflex
2 from pyasdf import ASDFDataSet
3

4 ds = ASDFDataSet("./preprocessed_27s_to_60s.h5")
5 other_ds = ASDFDataSet("./preprocessed_synthetic_27s_to_60s.h5")
6

7 event = ds.events[0]
8

9

10 def weight_function(win):
11 return win.max_cc_value
12

13

14 config = pyflex.Config(
15 min_period=27.0,
16 max_period=60.0,
17 stalta_waterlevel=0.11,
18 tshift_acceptance_level=15.0,
19 dlna_acceptance_level=2.5,
20 cc_acceptance_level=0.6,
21 c_0=0.7,
22 c_1=2.0,
23 c_2=0.0,
24 c_3a=1.0,
25 c_3b=2.0,
26 c_4a=3.0,
27 c_4b=10.0,

(continues on next page)

1.3. Pyasdf examples 11

http://krischer.github.io/pyflex/

NoisePy Documentation, Release v1.0

(continued from previous page)

28 s2n_limit=0.5,
29 max_time_before_first_arrival=-50.0,
30 min_surface_wave_velocity=3.0,
31 window_signal_to_noise_type="energy",
32 window_weight_fct=weight_function,
33)
34

35

36 def process(this_station_group, other_station_group):
37 # Make sure everything thats required is there.
38 if (
39 not hasattr(this_station_group, "StationXML")
40 or not hasattr(this_station_group, "preprocessed_27s_to_60s")
41 or not hasattr(
42 other_station_group, "preprocessed_synthetic_27s_to_60s"
43)
44):
45 return
46

47 stationxml = this_station_group.StationXML
48 observed = this_station_group.preprocessed_27s_to_60s
49 synthetic = other_station_group.preprocessed_synthetic_27s_to_60s
50

51 all_windows = []
52

53 for component in ["Z", "R", "T"]:
54 obs = observed.select(component=component)
55 syn = synthetic.select(component=component)
56 if not obs or not syn:
57 continue
58

59 windows = pyflex.select_windows(
60 obs, syn, config, event=event, station=stationxml
61)
62 print(
63 "Station %s.%s component %s picked %i windows"
64 % (
65 stationxml[0].code,
66 stationxml[0][0].code,
67 component,
68 len(windows),
69)
70)
71 if not windows:
72 continue
73 all_windows.append(windows)
74 return all_windows
75

76

77 import time
78

79 a = time.time()
80 results = ds.process_two_files_without_parallel_output(other_ds, process)
81 b = time.time()
82

83 if ds.mpi.rank == 0:
84 print(results)

(continues on next page)

12 Chapter 1. Functionality

NoisePy Documentation, Release v1.0

(continued from previous page)

85 print(len(results))
86

87 print("Time taken:", b - a)
88

89 # Important when running with MPI as it might otherwise not be able to finish.
90 del ds
91 del other_ds

1.3.4 Calculate Source-Receiver Geometry

This simple example demonstrates a fast way to extract the source-receiver geometry from an ASDF file. It assumes
that the event_id has been correctly set for each waveform and that these events are part of the global QuakeML
file.

1 import pyasdf
2

3 with pyasdf.ASDFDataSet("./asdf_example.h5", mode="r") as ds:
4 # Get dictionary of resource_id -> Lat/Lng pairs
5 events = {
6 str(e.resource_id): [
7 (e.preferred_origin() or e.origins[0]).get(i)
8 for i in ["latitude", "longitude"]
9]

10 for e in ds.events
11 }
12

13 # Loop over all stations.
14 for s in ds.waveforms:
15 try:
16 coords = s.coordinates
17 except pyasdf.ASDFException:
18 continue
19

20 # Get set of all event ids.
21 #
22 # Get set for all event ids - the `get_waveform_attributes()`
23 # method is fairly new. If you version of pyasdf does not yet
24 # have it please update or use:
25 # group = s._WaveformAccessor__hdf5_group
26 # event_ids = list({group[i].attrs.get("event_id", None)
27 # for i in s.list()})
28 # event_ids = [i.decode() for i in event_ids if i]
29

30 # Note that this assumes only one event id per waveform.
31 event_ids = set(
32 _i["event_ids"][0]
33 for _i in s.get_waveform_attributes().values()
34 if "event_ids" in _i
35)
36

37 for e_id in event_ids:
38 if e_id not in events:
39 continue
40 # Do what you want - this will be called once per src/rec pair.
41 print(

(continues on next page)

1.3. Pyasdf examples 13

NoisePy Documentation, Release v1.0

(continued from previous page)

42 "%.2f %.2f %.2f %.2f"
43 % (
44 events[e_id][0],
45 events[e_id][1],
46 coords["latitude"],
47 coords["longitude"],
48)
49)

Note: The examples on pyasdf shown here are exclusively collected from the pyasdf offical website, which is subject
to the BSD 3-Clause license.

1.4 Applications

To fulfill the strong need at user’s end for applications based on ambient noise, NoisePy provides two application
scripts for further surface wave dispersion analysis and seismic monitoring through measuring velocity change with
time.

1.4.1 I. Group velocity measurements

The script of I_group_velocity.py is to estimate the group velocity using wavelet transform. The general idea is to
apply narrow bandpass filters to the waveform and track the energy peak in each narrow frequency bands at multiple
frequencies. The image below shows our synthetic test by cross-comparing the predicted dispersion curves using
the wave propagation matrix method from CPS (Hermann et al., 2012) and those measured using our script upon a
synthetic waveform from SPECFEM2D.

14 Chapter 1. Functionality

NoisePy Documentation, Release v1.0

1.4.2 II. Monitoring velocity changes

The script of II_measure_dvv.py combines several general and popular methods for dv/v measurement including wave-
form stretching (Sens-Schönfelder and Wegler, 2006), dynamic time warping (Mikesell et al., 2015), moving-window
cross spectrum (Clark et al., 2011), and the two newly developed methods in wavelet domain including 1) wavelet
cross-spectrum (wcs; Mao et al., 2018) and wavelet stretching (Yuan et al., in prep).

1.4. Applications 15

	Functionality
	Installation
	NoisePy and Dependencies
	Testing

	Tutorial
	S0A. Downloading seismic noise data
	S0B. Deal with local SAC/miniseed data
	S1. Perform cross correlations
	S2. Do stacking

	Pyasdf examples
	Creating an ASDF File
	Processing Observed Data in Parallel
	Running pyflex in Parallel
	Calculate Source-Receiver Geometry

	Applications
	I. Group velocity measurements
	II. Monitoring velocity changes

